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Abstract

Operational benefits and efficiencies generated using prevalent water industry meth-
ods and techniques are becoming more difficult to achieve; as demonstrated by English
and Welsh water companies’ static position with regards the economic level of leakage.
Water companies are often unaware of network incidents such as burst pipes or low5

pressure events until they are reported by customers; and therefore use reactive strate-
gies to manage the effects of these events. It is apparent that new approaches need to
be identified and applied to promote proactive network management if potential opera-
tional productivity and standards of service improvements are to be realised.

This paper describes how measured flow and pressure data from instrumentation de-10

ployed in a water distribution network was automatically gathered, checked, analysed
and presented using recently developed techniques to generate apposite information
about network performance. The work demonstrated that these technologies can pro-
vide early warning, and hence additional time to that previously available, thereby creat-
ing opportunity to proactively manage a network; for example to minimise the negative15

impact on standards of customer service caused by unplanned events such as burst
pipes.

Each method, applied individually, demonstrated improvement on current industry
processes. Combined application resulted in further improvements; including quicker
and more localised burst main location. Future possibilities are explored, from which a20

vision of seamless integration between such technologies emerges to enable proactive
management of distribution network events.

1 Introduction

Internationally it is becoming difficult to improve upon the effectiveness and efficiency
of network operations such as leakage management because the limits of current tech-25

niques are being reached. The English and Welsh regulator Ofwat concluded that all
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but two water companies have reached an economic level of leakage (Pearson and
Trow, 2005) using traditional techniques (House of Lords, 2006). Consequently, there
is a need for water companies to be more innovative. The technology required to fully
understand, manage, and automate distribution network operation either does not yet
exist, is only partially evolved, or has not yet been proven reliable and cost effective for5

live networks. New technologies and asset management techniques therefore need to
be explored if knowledge and understanding of water distribution, and customer ser-
vice, is to be improved.

The aim of this paper is to present the practical application of findings from several
related research areas. The tools, techniques and methods discussed have previously10

been presented individually, and verified to different degrees; but they have never been
applied in combination to a single case study to demonstrate their combined poten-
tial. This paper seeks therefore to highlight the multiplicative benefit of combined ap-
plication, and the potential for proactive distribution network management that these
techniques could enable.15

2 Opportunity and case study

2.1 Opportunity

Flow and pressure instrumentation has evolved over many years, and highly robust
and accurate off the shelf designs are readily available. The current placement of in-
strumentation in water distribution networks in the UK is to meet the requirement to20

monitor and report leakage and low pressure; but measurement locations are not al-
ways the most sensitive for this purpose. Automated techniques have therefore been
developed to identify these optimal locations (Farley et al., 2008, 2010a, b; Rosich et
al., 2012) and continue to be improved.

Until recently, the water industry norm for data collection from distribution network25

instrumentation was via manual methods carried out during site visits, often only once
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a month or even less frequently. One reason for infrequent data collection was cost;
data transfer via telephone systems being particularly prohibitive in the past. However,
as data gathering and communication technologies steadily improved they became
less expensive to own and operate, and water companies began to automate data
collection. Data capture rate remained the same, but transfer to central storage was5

typically increased to once every 24 h. Instrument communication and data transfer is
now tending to shift positively towards more advanced General Packet Radio Service
(GPRS) or low power radio hopping solutions, with some vendors providing support for
the widely used Internet Protocol (IP). For the work reported here, GPRS technologies
were employed which enabled the change from data downloads once every 24 h, to10

once every 30 min; 48 times more frequent than previously. This higher frequency flow
and pressure data enables network performance to be analysed in a short time scale
previously not possible. Rapid detection of burst pipe and low pressure events allows
proactive management of their effects thereby minimising water loss and standards of
service failures.15

Despite these improvements, some fractions of water use, for example much do-
mestic and small business consumption, remain estimated. The next generations of
instruments and communication technologies will make data collection and transfer
more efficient and cost effective; even from remote sites. Wireless, m bus, z wave, Wi-
Fi, EDGE, 4G & 5G, and data analytic techniques are in continuous development, and20

have the potential to further revolutionise the way water companies gather and hence
analyse and use data. Also, in the future, technologies such as Automated Meter Read-
ing (AMR), or Advanced Metering Infrastructure (AMI), will allow water companies to
gather high frequency consumption data directly from residential and commercial cus-
tomers as well as existing sites. This will remove the need to estimate components25

of leakage calculations, and flow or demand in hydraulic modelling applications; and
provide a far better understanding of distribution network flow and pressure dynamics.

Data analytical tools are also evolving rapidly. The need to efficiently manage and
analyse increasing numbers of data streams has spawned numerous techniques, many
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new to the water industry (Srirangarajan et al., 2010; Zan et al., 2011; Romano et
al., 2013; Michalak et al., 2012). Artificial intelligence and network hydraulic simula-
tion methods are able to automatically verify, process, and continually analyse large
amounts of data. They convert data into information and present it in a time frame
completely impossible using manual or semi-automatic systems (Gama, 2010; Preis et5

al., 2012; Machell et al., 2010).
This study took the opportunity to apply several state of the art methods to a single

case study; as individual techniques and then in combination.

2.2 Case study

The water company collaborating in this work had recently implemented a remote com-10

munication/data transfer evaluation project in a complex distribution network that was
defined by a number of interconnected District Metered areas (DMAs). A DMA is a hy-
draulically bounded area within a distribution network that typically contains 500–5000
customer properties. The hydraulic operation of the network was not well understood,
and relative performance measures such as leakage per property were high; providing15

significant challenge. The project involved the installation of 490 data loggers to gather
data from DMA inlet flow meters, and pressure measurements from incorporated trans-
ducers. Flow and pressure data was sampled at 15 minute intervals. Measurements
were also taken at 1 min intervals from some locations to determine whether a higher
data resolution could provide any useful extra information. The loggers were equipped20

with a GSM modem and were, at the time, unique in the industry in that they commu-
nicated via GPRS and transferred data to a mobile telephony provider’s data centre.
2 measurements, 15 min apart, were transferred from each instrument every 30 min.
From there, the data was relayed to the water company via a high speed broadband
connection known as a pipeline, into a central data store.25

Access to the water company’s project study area, instrumentation and data, pro-
vided an ideal opportunity to apply and evaluate the methods used in this work. An
overview of the individual state of the art for these methods is now presented.
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3 Overview of the state of the art techniques applied

3.1 Instrument location and DMA subdivision

Typically, pressure data is used to identify low pressure events within a DMA, or for their
retrospective analysis. The point of highest elevation is often accepted as a pragmatic
and reasonably indicative location to monitor pressure. However, a monitoring location5

may also be selected because of a history of known low pressure events in a specific
area of a network. In the UK, this pressure monitoring location is commonly known as
the DG2 point, and is primarily used to report against the regulatory minimum pressure
levels of service requirement. The current approach does not necessarily identify the
most sensitive location for detecting pressure fluctuations. If the most sensitive loca-10

tions were determined, more fluctuations and events would be detected and awareness
of system performance increased; for example, more burst pipes can be identified, and
more accurate estimates of the number of customers suffering low pressure, over what
duration, can be determined. A method to identify optimal locations for pressure instru-
ments used for detection and location of leak/burst events was developed by Farley15

et al. (2008, 2010a, and b). The approach utilised a methodology that searches a Ja-
cobian sensitivity matrix produced by sequentially modelling leak/burst events at all
nodes in a 1-D hydraulic model, and evaluating the change in pressure response at
all possible instrument locations. The matrix was then searched (focussing on detec-
tion) to maximise overall system sensitivity and to minimise the number of instruments20

required in a given network; or where appropriate, to complement existing instrumen-
tation to increase detection sensitivity.

To validate the approach, a number of pressure instruments where deployed in se-
lected DMAs and a series of burst events were simulated by opening a number of
fire hydrants inside DMAs. Data was collected from the pressure instruments located25

inside each DMA, including the current DG2 location, and at the most sensitive (or opti-
mal) location previously identified by a Jacobean matrix approach. Analysis of pressure
measurements recorded before, during, and after the burst events were used to evalu-
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ate the sensitivity of each instrument location to the pressure changes caused by the
simulated burst events (Farley et al., 2010a). Figure 1 shows model predicted, and ac-
tual sensitivities for 5 simulated bursts at eight instrumentation points in a single DMA
highlighting the correlation between predicted (model) and actual (real) sensitivities.
Predictions were made using typical UK industry standard hydraulic models with no5

additional calibration.
From Fig. 1 it is clear that hydraulic models can be used to accurately predict pres-

sure changes caused by burst mains, and can therefore be applied to support the
optimal location methodology. Additional analysis of the data demonstrated that data
from optimally located pressure instrument(s) can be used to detect more low pressure10

and leak/burst events within a DMA than data from current DG2 locations, and how to
selectively supplement existing instrumentation to improve detection.

The methodology to identify the most sensitive locations for instruments can be ex-
tended to provide event location information. Further work (Farley et al., 2013) explored
an approach to search the Jacobian sensitivity matrix to provide differential location15

information, requiring the integration of a Genetic Algorithm (GA) search routine to
improve efficiency. Single, and multiple, optimally (providing selected levels of overlap-
ping or different zones of sensitivity) located instruments can be selected to identify
sub-areas within a DMA, without the need for network reconfiguration or closed valves.
This method has great potential, not only for detecting new leaks/burst events, but also20

steering leak location efforts.

3.2 Data quality and checking

If maximum benefit is to be obtained from investment in collecting large volumes of
data, management, storage and access to both current and historical data sets is re-
quired.25

Distribution network flow and pressure data quality can generally be classed as
“dirty”. Dirty data is manifest as large chunks of missing, corrupt or out of range val-
ues from faulty loggers and/or the presence of erroneous date and time stamps. A
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methodology for dealing with these issues was developed as an integral part of the on-
line Artificial Intelligence (AI) system (Sect. 3.3) in order to more easily manage large
amounts of data of varying quality. Data checking included statistical tests for station-
arity (Mounce et al., 2010).

7-Technology’s data warehouse product, Data Manager, was used in this study to5

pre-process and make data accessible to the Automated Data Analysis system (AI
system) and online hydraulic models described later. Data Manager was used to per-
form the following functions:

– Receive flow, pressure and service reservoir level data

– Perform checks and conversions on the data received (using a pre-processor)10

and data emulation where measured data was not available for some reason

– Maintain cyclic buffers of weekly profiles for selected instruments

– Make the pre-processed data available for online AI system analysis and hydraulic
simulations (historical and current)

– Automatically create and back up a database of historic flow and pressure data15

Pre-processing involved automatic data checks for missing or corrupt data and/or
data values that fell outside a normal value distribution at each instrument location.
This was done using either absolute values or rate of change of values in the data time
series. Where a data check failed, error messages were created and, if required, data
emulation was performed. Emulation was used to replace missing or corrupt data with a20

fixed or an average value for the measurement site or, by reference to another site that
usually has very similar time series values. In this way, Data Manager was configured
to interface the real network measured values with its equivalent in an online AI system
(Sect. 3.3) and hydraulic models; the latter used the data as boundary conditions for
simulations (Sect. 3.4).25

Data quality was a significant issue especially when obtaining long period time se-
ries. The quality and continuity of data is essential for online modelling and AI systems.
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Although a hydraulic model can deal with missing data using substituted values, as the
number of substitutions increases the accuracy of the model decreases and, eventu-
ally, a point is reached where the resultant error is so large simulation results cannot
be relied on to be fit for purpose.

3.3 Automated data analysis for burst detection5

The challenge of timely data analysis can be met using automated computation meth-
ods. Event detection algorithms work by obtaining data, performing some analysis and
then returning a binary classification i.e. generate an alarm or not. Despite some soft-
ware offering profile alarm levels, there has been very little application to date in the
water industry. Existing state of the art systems use flat line alarm thresholds for key10

measurement sites, which are then continuously monitored to enable identification of
large bursts. The collaborating water company established and implemented site spe-
cific high and low thresholds for DMA inlet flow and pressure flat line alarms, to provide
simple data analysis of absolute, individual values. At the time, implementing these
flat line alarms was a significant move forward for detecting network events and rep-15

resented a step change in awareness of network hydraulic performance. In particular,
they proved useful for detecting sudden catastrophic bursts, and acting as a failsafe.
However, due to continual adjustment of alarm level settings over time the flat-line sys-
tem started to generate a high number of false alarms (ghosts) that did not correlate
with any known events, also many pipe bursts were still not detected and no action was20

taken. A significant issue with flat-line alarm thresholds is the trade-off between false
alarms (alarms with no identifiable cause) and non-detection of smaller burst events.

More sophisticated data analysis methodologies using Artificial Neural Network
(ANN) and Fuzzy Logic (FL) technology were therefore applied. Recorded flow and
pressure data from each measurement location was sorted by DMA name and stored25

in a database. Assembled data sets which passed data quality checks were first pre-
processed to deal with any missing data using well proven time series analysis tech-
niques for filling, then normalised by re-scaling to a range required by the ANN, and
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finally restructured into the format required by the analysis system. A single model was
used for each data stream. The pre-processed data sets were used to train a Mixture
Density Network (MDN) ANN to make time series predictions based on a lag of past
time series values. Importantly, this prediction was not a particular value; the MDN ar-
chitecture learns the distribution (through a mixture model) for a particular instrument5

from past data, and assigns a confidence level to the observed flow values. A Fuzzy
Inference System (FIS), consisting of a set of fuzzy rules, analysed this mixture model
and the observed value over a suitable time window and generated classification fuzzy
values (an indication of abnormal events such as burst pipes) such that a % confidence
could be assigned to alerts and, in addition, an accurate estimate of likely burst size10

could be determined. Figure 2 shows how this continually updated model constructs
the probability density at time steps into the future horizon.

The algorithms and software employed, as well as further background on system
integration, are described in more detail in Mounce et al. (2003) and Mounce et
al. (2010). Abnormal classifications by the FIS were entered into an alerts database,15

and automated email alerts were sent to the water company’s control room staff.
A first quarter (three month) evaluation of the system, when leak/burst rates are usu-

ally highest in the UK (commonly attributed to freeze/thaw cycles), was conducted us-
ing manual data inspection, and correlation to repair information recorded on the water
company’s Work Management System (WMS) and customer contact database. During20

this period the online AI system was analysing flow and pressure data from as many
as 156 flow and 255 pressure instruments, the actual number being dependent upon
changes in data quality over time. A total of 227 alerts generated by the AI system were
reviewed, 78 for flow and 149 for pressure. (For comparison it should be noted the flat
line system generated 47 853 alarms for the same data streams and the same three25

month period). Their classifications are shown in Fig. 3a and b. The class “abnormal”
includes all cases where the AI system produced an alarm and subsequent manual
data interpretation confirmed that a noteworthy event did occur, but for which there
was no correlation with mains repairs or customer contacts. The signature of some of
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these abnormal events such as large industrial demands, or closure and opening of
valves, could not necessarily be differentiated from that of bursts using the AI analysis
system. However, their detection was still of significant interest to the water company in
that it provided important operational information that was previously undetected. Un-
expected or unlicensed water use such as for the filling of private fire tanks, increased5

industrial use for new processes, unauthorised filling of street cleaning equipment and
water bowsers, or illegal connections, can all generate abnormal flow events and are
all activities that water service providers need to be made aware of if proactive man-
agement and control of the network is to be realised. Detections can also be produced
by network rezoning activities, changes to valve arrangements or pump schedules and10

other operational scenarios, thereby providing an additional check of the timing, mag-
nitude and effect of such activities. This information is particularly important when such
activities have been outsourced to third party contractors.

From Fig. 3a and b it can be seen that during the period of analysis a good correlation
was found between the AI system generated alerts and company WMS/customer con-15

tact information. This was very good for flow where 95 % of flow alerts corresponded
to WMS/contact information or known engineered events with only 5 % ghosts. The
pressure data analysis was found to produce more ghosts (38 %), which was ex-
pected based on previous work and other researcher’s findings which highlight the
non-stationary nature of the pressure profile over time (Mounce et al., 2011; Ye and20

Fenner, 2010).

3.4 Combination of optimal location and automated analysis technology

The effectiveness of combining optimally located instruments and the AI event detec-
tion system were tested for detection and location of simulated bursts. Simulated bursts
were used to negate the delays and uncertainty associated with real events. Optimal25

instrument locations were identified and instruments installed across 16 DMAs. Hy-
drants were then flushed by water company Field Teams in several DMAs chosen at
random; the research team being unaware of the hydrant flushing locations or times. In
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this way 6 system blind test events were created in 5 different DMAs; all of which were
positively detected by the instrumentation and the AI system; which correctly identify
which DMA the event had been created in, and accurately reported the magnitude of
the flow of each hydrant flush (simulated burst flow).

5 of the 6 blind tests were conducted in 4 different DMAs that had additional (opti-5

mally located) pressure instrument(s) installed. Results confirmed that the methodol-
ogy developed to divide a DMA into a number of sub-zones to reduce the search area
and improve burst location worked well. The correct sub area within each DMA in which
a simulated burst occurred was correctly identified. 3 out of the 5 blind tests produced
exact agreement between the model simulated and actual instrument responses; and10

therefore the correct zone of the burst event could be identified (Farley et al., 2013). In
the other 2 DMAs, factors beyond the control of the method, such as instrumentation
or logger failure, prevented this.

A successful example result of how pressure instruments can be deployed to provide
sub-DMA event location is shown in Fig. 4.15

For the case shown in Fig. 4, alerts for the DMA inlet flow meter and DG2 pressure
instrument were generated, but not for the additional pressure instrument in the yellow
(vertical lined) sub-zone. The pressure instrument at the inlet also did not detect the
event, as predicted by the methodology. By reference to the DMA sub-zone sensitiv-
ity matrix, it was confirmed that this combination of alerts correctly identified that the20

hydrant flush had occurred in the blue (horizontal lined) sub-zone, hence demonstrat-
ing how this combination of event detection and optimal location can provide sub-DMA
location. Field tests also demonstrated the potential for application of the method to
multiple DMAs, and that subdivision of DMAs with very differing characteristics was
possible. A reduction in search area was achieved for all but one DMA. The number25

of zones the DMAs were divided into was dependent on their individual characteris-
tics. Results suggested that subdivision of typical DMAs into 4 zones can be achieved
through the deployment of only one additional pressure instrument.
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An extension of optimal instrument location approaches could be the creation of
monitoring areas without the need for closed valves; virtual DMAs. This would enable
more open systems with less dead-ends and the inferred water quality issues.

3.5 Online modelling

Aquis, supplied by 7-Technologies A/S, Denmark, was used to build and develop sev-5

eral hydraulic models for 1-D application. These models were used to populate the Ja-
cobean sensitivity matrices for instrument location methods (Sect. 3.1), and to present
network flow and pressure information superimposed on a street map background
showing network assets and customer properties. Measured flow and pressure inputs
and model simulation outputs were used to generate alarms and warnings when flow(s)10

or pressure(s) anywhere in a network and/or at specific network locations moved out-
side normal operational values.

A hydraulic network model is most useful when it displays up to date information
and, ideally, predictions for the next few hours. The former is governed by the age of
available input data. The latter can be achieved by simulation and extrapolation of cur-15

rent state using inbuilt predicted and normalised patterns for non-measured demand
components. When measured data is regularly streamed into a model to set simulation
boundary conditions the model is termed “online”. Online model boundary conditions
are continually updated with the most recent data available; in this case the data was
30 min old. An online model is not constrained by fixed (historic) 24 h flow and pres-20

sure profiles used as boundary conditions in conventional extended period simulation
models. This means that non-diurnal flow and pressure patterns are accounted for and
reflected in simulation output.

A 2 DMA model was built and used to demonstrate the effects of changes in net-
work flow and pressure on customers during a real network event when a hydrant was25

opened by unknown persons in one of the study DMAs (Machell et al., 2010). The
effects of changes in flow and pressure could be viewed as they rippled through the
network.
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A 3 DMA model was used for the evaluation of the optimal pressure instrument
number and location methodology and provided flow, pressure, and velocity results
for GIS visualisation. Figure 5 shows the extent of this model on a GIS display with
results overlaid showing the pressure in each pipe in the network.

A 16 DMA model was configured to simulate every 30 min. The 30 min interval be-5

tween simulations was appropriate for this work but could have been reduced; the lower
limit being dictated by the time taken to capture, transfer, and pre-process raw data. 77
flow and pressure instruments at the inlets and outlets of 16 DMAs, 4 service reser-
voirs, 2 pumping stations and a number of DG2 pressure monitors provided boundary
condition data for this model. Data Manager pre-processed raw data from these sites10

and passed it to the model. This model was used to support the DMA subdivision work
and instrument/AI system tests (Sect. 3.4) and test alarm and warning functionality of
the modelling system.

Pressure data was found to be extremely useful for the online modelling system.
It was a powerful resource for model calibration and fault finding, and was used to15

generate alarms for low or unnecessarily high pressure detections. Availability of a
stream of continuously updating flow and pressure data enabled calibration to current,
rather than historic measurements, and to make it a continuous and iterative process,
reflecting ever changing dynamics in the network caused, for example, by changes to
valve positions, the timing of pump operations or the turnover rate of service reservoirs.20

Simulation results demonstrated that the online models could accurately calculate
the magnitude of flow and pressure fluctuations caused by simulated bursts (Sect. 3.1)
and hence the effect on standards of service. This functionality can be used to iden-
tify faulty instrumentation or corrupt/missing data, unexpected flows or pressures, and
pump failure for example. It can also generate warnings when flow or pressure is per-25

sistently moving towards an alarm situation. This enables fast response and proactive
action to minimise the effect on customers.

On-line simulation of a water distribution network provides a tool that can offer tan-
gible and significant operational benefits for network managers. It allows network op-
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erators to progress beyond the reactive and develop a proactive approach to network
management. For example, the preliminary effects of a burst main can be detected
at an early stage which, in turn, can allow the operators to minimize the later effects
and sometimes pre-empt and avoid many standards of service failures by manipu-
lating valves, providing an alternative supply or making other appropriate operational5

change. Pressure effects on every pipe in a network can be captured to gather knowl-
edge about which customers were affected by an event and for how long – a UK stan-
dards of service reporting requirement. With optimally located instrumentation, online
models provide a visual overview of all flows and pressures across an entire network.
Online models can be used to generate timely warnings of unusual flow and pressure10

events. They can monitor for persistent changes such as slow but continuous reduc-
tion in pressure. Then, in combination with the specialised detection and analysis of
the AI system, can be used to help to locate burst pipes and unusual network flow and
pressure events.

3.6 Data sampling rate15

The unofficial UK industry standard for the temporal resolution of flow and pressure
data, at most locations, is 15 min. To some extent the use of 15 min hydraulic data
is pragmatic (storage space of loggers and receiving systems), but it also reflects a
trade off between the volume of information collected and the detail of flow or pressure
fluctuations that can be captured. A good representation of the overall dynamics within20

a network can be observed with fifteen minute data, although the shape and amplitude
of pressure transients cannot be resolved with data points more than a tenth of a
second apart. Higher frequency sampling potentially also allows component analysis
in order to gain an understanding of the different contributions to the total flow from
different types of demand such as domestic and industrial, or flow due to leakage.25

However, little published work has investigated the benefit of using logging intervals
in the sub-fifteen minute range. Data sample rates of 1, 5 and 15 min were evaluated
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for their suitability when used for flow and pressure event detection by the systems
developed in this study; Table 1.

From results shown in Table 1, Mounce et al. (2012) concluded that, at the present
time, sampling intervals of 1 or 5 min do not improve event detection sufficiently to
justify the extra resources required to gather the data. For example; the increase in5

power required for battery powered instruments and loggers (all the loggers used in
this study were battery powered), and the data management overheads. Similarly, cur-
rent online modelling approaches do not yet require data at these higher frequencies.
However, this is likely to change in the future as the density of sensing of water distribu-
tion system parameters increases due to reducing cost and improving logging capacity10

and communications options. Pressure transients can cause, and be an indicator of,
burst pipes and result in contamination intrusion; Ebacher et al. (2010), Misiunas et
al. (2005). Once systems can deal with high frequency, high sample rate data, it will
be possible to monitor and analyse transient pressure fluctuations to improve burst
detection, identify the cause of transients and prevent contamination events; Jung et15

al. (2011), Yang et al. (2011).
Data value averaging, inherent in how flow is commonly measured but unusual for

pressure, was found to be a useful strategy for both flow and pressure data. A simple,
low cost, firmware upgrade to the loggers is recommended so that the data averaging
can be performed on the logger in order to reduce the amount of data transmitted via20

GPRS and provide the following significant benefits:

– Improved detection time compared to using instantaneous data with event detec-
tion software

– Eradication of errors associated with short-term variations leading to more ac-
curate hydraulic model calibration and simulations when using values for model25

boundary conditions and therefore the likely provision of more accurate regulatory
compliance data/reporting
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4 Discussion

The goal of this work was to demonstrate how online data processing can benefit
proactive water distribution network operation. One of the aims was to free staff from
manual interpretation of data, multiple and/or false alarms, and leakage/burst event
data. Several individual approaches have been explored, developed and designed to5

improve some aspect of current industry processes.
Each of the individual methods presented have been shown to provide specific ben-

efits, but their true worth is only realised when all these components are applied in
combination. Figure 6 shows an idealised application schematic for all the components.

The system would be initialised by using offline hydraulic models, driven by historic10

data, to generate pipe sensitivity matrices from which to identify optimal locations for
instrumentation within the network. The minimum number of instruments required to
meet identification and location sensitivity constraints could then be installed in the
field.

The instruments would provide a constant stream of flow and pressure data which15

would be checked, and pre-processed, before being stored for access by the analyti-
cal components of the system. This data would be stored in a “warehouse” and made
available to online hydraulic modelling and artificial intelligence based analysis sys-
tems, and/or end users.

Once the data was being streamed into the system, the online hydraulic model would20

be started. The sensitivity matrices could then be recreated using this new, current
data, and reviewed to check that instrument locations are still optimal. If they were not,
instrument locations could then be moved to the new optimal sites for current network
operation. Following network changes such as DMA rezoning, further review would
be undertaken to ensure maximum detection sensitivity is maintained at all times; if25

necessary, by moving, adding or removing instruments. The online system could then
be allowed to run continually providing an overview of current flows and pressures in
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all pipes within the network, and the ability to generate new sensitivity matrices on
demand.

The model could then be configured to provide warnings or alarms when unusual
flows or pressures were detected by specific instruments. Multiple instruments could
be used in combination to generate specific alarms such as pump failure. The impact5

of a pump failure could be modelled, the effects mapped, and the characteristics used
to identify the event should it happen in the future. For example; if flow at A droped
by X%, and pressure at B and C droped by Y%, display the alarm “The pump at D
is not operating within normal parameters”. In this way the performance of many dy-
namic components of a network, for example PRVs and service reservoirs could be10

continually monitored using a very small number of instruments.
At the same time, data would be streamed into the AI event detection system. This

component would automatically analyse large amounts of data, and generate burst
pipe (and other hydraulic anomalies) detection alarms and flow estimates, along with
a measure of certainty; soon after the event occurred (the actual time to generate an15

alarm would be dependent upon a number of factors). Combined use of the AI system
with dynamic sensitivity matrices generated by the online model would quickly provide
location information facilitating quicker repairs.

During an event, the online model would reflect the effect of any event across the en-
tire network highlighting which customers were impacted. If the model was configured20

to do so, it could identify all pipes with flows and pressures below a definable thresh-
old, record and report them. In this way it would be possible to realise continuous low
flow/interruption to supply (DG2/DG3) reporting. The data collected could also be used
when investigating an event and its effects on customers.

System performance, and hence the benefits realised, would of course depend upon25

the performance characteristics of the instrumentation and it being correctly installed.
Similarly, online model output would reflect the effort expended in calibration; although
tools for this purpose are becoming sophisticated, efficient and cheaper to use. It is
not irrational to expect that, with the need for water efficiency coming to the fore, all
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usage will be metered in the future to minimise loss and waste, and this is reflected
in the development of automatic meter reading (AMR), smart metering technologies,
and smart water networks. This will benefit hydraulic modelling greatly by reducing
uncertainty and making model calibration easier. AI systems will also benefit greatly
from this additional measurement data as such systems can be expanded to accom-5

modate almost any number of time series inputs enabling very accurate network flow
mapping which will in turn provide better detection and location information. The loop
is completed when this information is assimilated into hydraulic models enabling more
accurate calibration and the creation of improved sensitivity matrices. The whole pro-
cess becomes iterative resulting in a stable, very accurate, and sensitive detection and10

location system.
The vision, that is the natural progression of the work presented here, is seamless

integration between a variety of instrumentation types, automated data gathering and
online processing, analysis and interpretation/presentation technologies, allied with
decision support systems to provide a truly proactive management and control ca-15

pability. Water quality performance monitoring and reporting would be integrated and
automated hydraulics would be programmed to minimise residence time to maintain
residual disinfectant and maximise water quality. Automatic remote control of dynamic
assets and valves would ensure supply and route it optimally to support unexpected
demand from burst events, and to further ensure high water quality.20

The vision would be particularly enabled by emerging technologies such as Smart
Sensors (Frank, 2013), and Smart Pipes (Metje et al., 2011; Cheng et al., 2006) which
will include built in, smart flow, pressure, transient and stress, leakage detection, and
water quality parameter measurement and monitoring. A substantial improvement in
the availability and ownership cost of instrumentation, data collection, and communica-25

tions, and the way they are applied will also impact on other distributed infrastructure;
for the water sector, this includes sewerage systems. Such work is already underway,
for example, on CSO analytics (Guo and Saul, 2011; Mounce et al., 2013) and GA
optimised fuzzy logic pump control (Ostojin et al., 2011).
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5 Conclusions

This paper summarises the development, application and verification of a number of
different methods/approaches designed to obtain value/benefit from measurements of
flow and pressure within water distribution networks.

The individual techniques have shown how network data can be gathered from op-5

timally located instrumentation and automatically checked, analysed and presented,
to provide timely information for network operation decision making, and for flow and
pressure event detection and location. Each of the methods presented can improve
current distribution network knowledge, and are valuable steps towards improving net-
work management.10

When the individual methods explored are applied in combination, as shown in Fig. 6,
the composite system enables a step change in proactive information network man-
agement, including the potential to generate improvements in network performance,
customer standards of service, and the economic level of leakage.

In future, entire water supply (and sewerage) networks should be proactively man-15

aged from source to tap, using state of the art measurement and control technologies
backed by data analysis and decision support systems; much of which will be pro-
grammed and analysed by artificial intelligence methods, making life much simpler for
system operators and industry decision makers.
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Table 1. Summary of average improvement in detection times (minutes) over multiple instru-
ments relative to 15 min instantaneous data in each case (Mounce et al., 2012).

Flow and pressure Flow only Pressure only
Inst. Avg. Inst. Avg. Inst. Avg.

15 min 0 44 0 45 0 43
5 min 29 49 38 52 26 48
1 min 53 54 53 53 53 54
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f01 

Fig. 1. Model predicted vs. actual data sensitivity (for looped DMA).
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f02 

Fig. 2. Mixture model for future flow prediction and fuzzy interpretation.
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f03 

Fig. 3. 3-month summary of AI flow and pressure alerts (January to March).
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f04 

Fig. 4. Sub-DMA location of blind event in the pilot area (after Farley et al., 2012).
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f05 

Fig. 5. 3 DMA online model showing pressure in pipes at 10:45 GMT.
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Fig. 6. Schematic of idealised combined application.
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